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Abstract: Excitons dominate the photonic and optoelectronic properties of a material. Although significant advancements exist
in understanding various types of excitons, progress on excitons that are indirect in both real- and momentum-spaces is still
limited. Here, we demonstrate the real- and momentum-indirect neutral and charged excitons (including their phonon replicas)
in a multi-valley semiconductor of bilayer MoS2, by performing electric-field/doping-density dependent photoluminescence.
Together with first-principles calculations, we uncover that the observed real- and momentum-indirect exciton involves
electron/hole from K/Γ valley, solving the longstanding controversy of its momentum origin. Remarkably, the binding energy
of real- and momentum-indirect charged exciton is extremely large (i.e., ~59 meV), more than twice that of real- and
momentum-direct charged exciton (i.e., ~24 meV). The giant binding energy, along with the electrical tunability and long
lifetime, endows real- and momentum-indirect excitons an emerging platform to study many-body physics and to illuminate
developments in photonics and optoelectronics.

Keywords: excitons, real- and momentum-indirect exciton, giant binding energy, electrical tunability, multi-valley
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INTRODUCTION

Excitons and their complexes (e.g., phonon replicas, biexcitons, and Fermi polarons) are elementary ex-
citations that predominate the optical properties of a material and hence underlie the development of various
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emerging technological advances in photonics and optoelectronics [1]. According to the relative positions of
the constituent electrons and holes in real- and momentum-spaces, excitons can be categorized into four
types: real- and momentum-direct (type-I), real-direct but momentum-indirect (type-II), momentum-direct
but real-indirect (type-III), and real- and momentum-indirect (type-IV), as shown in Figure 1. Type-I ex-
citons can strongly couple to photons and show large luminescence quantum efficiency, setting a foundation
for a wide variety of optoelectronic applications, such as light-emitting diodes, lasers, solar cells, and
optoelectronic devices [2–5]. However, the rather short lifetime of real- and momentum-direct excitons
strongly impedes their applications in scientific research and technological innovation where long-lived
excitons are required, for example, exciton superfluid phase, exciton crystals, and exciton transistors [6,7].
Notably, in some intentionally designed systems, such as van der Waals heterostructures with a staggered

band alignment [8–10] and quantum wells under an external electric field [11], the wave functions of the
constituent electrons and holes are spatially separated, resulting in the formation of real-space indirect
excitons (also referred to as interlayer excitons or spatially indirect excitons). Thanks to the spatial separation
of the electrons and holes, real-space indirect excitons exhibit a much longer lifetime than the real- and
momentum-direct ones [9,12–14]. In the light of the long-lived real-space indirect excitons, a wide variety of
captivating physical phenomena has been demonstrated, including but not limited to exciton Bose-Einstein
condensation [15–18], correlated excitonic insulator states [19–21], and dissipationless valley exciton de-
vices [14,22]. In addition, real-space indirect excitons harbor in-built electric dipoles and are widely tunable
in applied electric fields [2,9,10,23–25], representing an advantageous scenario for technological applica-
tions. Although substantial developments and progress on understanding the real-space indirect excitons
have been witnessed, the studies of real-space indirect excitons have mainly focused on the momentum-
bright species (i.e., type-III excitons) with electrons and holes localized in the same valley of the Brillouin
zone (BZ) [9,12,14,23,26–28]. However, the real- and momentum-indirect excitons (type-IV), which are
expected to possess an even longer lifetime than the momentum-direct but real-indirect ones due to the dark
nature in both real- and momentum-spaces, are still largely unexplored experimentally.
A suitable candidate for investigating real- and momentum-indirect excitons should meet two basic

conditions simultaneously. First, it should possess multi-valleys in conduction and valence bands, endowing
the possibility of momentum-indirect excitons. Second, for Bloch states at distinct valleys, the orbital
compositions should be different. Consequently, the wave functions of different valleys reside at different
positions in real-space, which enables the momentum-indirect excitons to be indirect in real-space as well. In

Figure 1 Real- and momentum-indirect and direct excitons. Based on the configurations of the constituent electrons and holes in real- and
momentum-spaces, excitons can be divided into four types: real- and momentum-direct (type-I), real-direct but momentum-indirect (type-II),
momentum-direct but real-indirect (type-III), and real- and momentum-indirect (type-IV).
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particular, two-dimensional (2D) multi-valley semiconducting transition metal dichalcogenides (conduction
band: Q and K valleys; valence band: K and Γ valleys) with different orbital compositions at distinct valleys
provide a promising platform for real- and momentum-indirect excitons [24,25,29,30]. Despite the fact that
the momentum-indirect excitons in these materials have been well uncovered [31,32], their indirect nature in
real-space remains equivocal. In this work, we fabricate hexagonal boron nitride (h-BN) encapsulated dual-
gate devices of a multi-valley semiconductor of bilayer MoS2. Through electric-field tunable photo-
luminescence (PL) spectra, we identify the out-of-plane static electric dipole and quantum-confined Stark
effect of momentum-indirect exciton in bilayer MoS2, providing the smoking gun evidence of their real-space
indirect characteristic and hence the existence of real- and momentum-indirect exciton. In conjunction with
density functional theory (DFT) calculations, we further uncover that the observed real- and momentum-
indirect exciton in bilayer MoS2 involves electron and hole respectively from K and Γ valleys, addressing the
longstanding controversy of its momentum origin. As bilayer MoS2 is doped with electrons, new sets of PL
peaks corresponding to real- and momentum-indirect charged excitons (namely trions) emerge below the
energy of the real- and momentum-indirect neutral excitons. Remarkably, the binding energy of real- and
momentum-indirect trion is giant in bilayer MoS2, twice that of the real- and momentum-direct trions in
transition metal dichalcogenide systems.

RESULTS AND DISCUSSION

High-quality, h-BN-encapsulated dual-gate bilayer MoS2 devices (as schematically shown in Figure 2A) are
fabricated by a van der Waals mediated dry-transfer method (please see Section I in Supplementary In-
formation (SI) for more details) with few-layer graphene (FLG) as top and bottom gate electrodes. The dual-
gate configuration enables us to independently tune the carrier density n0 and out-of-plane electric field Fz.
Here n C V C V e= ( + ) /b bg t tg0 and F C V C V= ( ) / 2z b bg t tg B0 , where e is the elementary charge, 0 denotes

the vacuum permittivity, B is the out-of-plane dielectric constant of bilayer MoS2,C V( )b bg and ( )C Vt tg are the

geometrical capacitances per area (applied voltages) for the bottom and top gates, respectively (details in
Section IV in SI).
Figure 2B depicts the PL spectrum of device D1 at Fz = −0.074 V/nm. Unless otherwise specified, the data

presented in the main text are taken from the high-quality device D1 in a high vacuum at 10 K with a
continuous wave optical excitation at ~2.33 eV (532 nm). In addition to the well-known momentum-direct
excitons, including both the real-direct transition at around 1.92 eV (labeled as XA) and real-indirect
emissions at around 1.95/2.02 eV (dubbed as IX1/IX2), three momentum-indirect excitons in the energy range
of 1.50–1.58 eV (marked as RMX1, RMX2 and RMX3, in the sequence of decreasing emission energy) can be
unequivocally observed. Note that the existence of two momentum-direct but real-indirect exciton species of
IX1 and IX2 can be ascribed to the fact that the external electric field breaks the layer degeneracy of band
structure [23]. Figure 2C presents the color contour of PL spectra against the applied out-of-plane electric
field Fz. To better distinguish the fine features, we extract the first-order derivative of intensity I over photon
energy E (∂I/∂E) as the function of Fz, as depicted in Figure 2D. Obviously, momentum-direct but real-
indirect excitons IX1 and IX2 vary linearly with the external electric field Fz, yet have reversed slops,
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evidencing their opposite out-of-plane static electric dipole moments. Via linear fitting (green dashed lines in
Figure 2D and section IX in SI), we extracted the out-of-plane electric dipole moments of IX1 and IX2: μz(IX1)
= (0.526 ±0.009)e∙nm and μz(IX2) = −(0.530 ±0.004)e∙nm, in good agreement with the previous results [23]
and our theoretical calculations (±0.578 e∙nm, as discussed in Section VII in SI). It is noteworthy that when
an enough high electric field Fz is applied, the shifts of IX1/IX2 deviate from a simple linear Stark shift
(Figure S5). This can be understood as the strong coupling between IX1/IX2 and real- and momentum-direct
B excitons, as demonstrated by recent experimental measurements [33] and theoretical calculations [34].
Remarkably, the three momentum-indirect excitons RMX1-3 in bilayer MoS2 also vary linearly with the

applied out-of-plane electric field Fz (gray dashed lines in Figure 2D), evidencing the quantum-confined
Stark effect and their indirect nature in real-space. This demonstrates that RMX1-3 belong to real- and
momentum-indirect type-IV exciton. To further confirm their indirect nature in both real- and momentum-
spaces of RMX1-3, we perform DFT calculations with the Perdew-Burke-Ernzerhof generalized gradient
approximation for exchange-correlation interaction (Section VII in SI). Figure 3A shows the orbital-resolved
band structure of bilayer MoS2. For the valence band, its maximum is located at the center of the first BZ (i.e.,

Figure 2 (A) Schematic of dual-gate h-BN encapsulated bilayer MoS2 device. (B) PL spectrum of device D1 at Fz = −0.074 V/nm. Note
that the range of 1.45–1.60 eV is magnified by 10 times for clarity. (C) Contour plot of the PL spectra of device D1 as a function of photon
energy (bottom axis) and Fz (left axis). The doping density remains unchanged. (D) First-order energy derivative of (C). Real- and
momentum-indirect excitons are labelled as RMX1–3 in the sequence of decreasing emission energy. Gray (green) dashed lines in (C) and (D)
represent linear-fits of RMX1–3 (IX1,2). The peak at around 1.99 eV that is insusceptible to Fz corresponds to the Raman G peak of graphene.
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Γ point). For the conduction band, there are two critical points (i.e., K and Q valleys) whose energies are
almost degenerate. As a consequence, Q-Γ and K-Γ transitions are the two possible configurations of
momentum-indirect excitons in bilayer MoS2. Since it is difficult for conventional techniques to directly
distinguish the two transitions, the exact origin of momentum-indirect excitons in bilayer MoS2 is highly
contentious. Some indicate the momentum-indirect exciton in bilayer MoS2 to be K-Γ transition [31,35],
while the others reveal that it should be Q-Γ transition [36–38]. To solve the longstanding controversy, we
derive the real-space distribution of the spin-up wavefunctions at valence band Γ, and conduction band K/Q
(Figures 3B–3D). For spin-down wavefunctions, the real-space distribution can be evidently acquired by
time-reversal symmetry. Obviously, the spin-up wavefunction at valence band Γ is symmetrically distributed
in both layers, and shows 100% interlayer hybridization (Figure 3B). In stark contrast, the spin-up wave-
function at conduction band K is only distributed in the lower layer and hence fully layer-polarized (Figure
3C). While the spin-up wavefunction at the conduction band Q shows strong delocalization, it still has a
slight layer polarization (Figure 3D). Because of the various real-space distributions and interlayer hy-
bridization at diverse valleys, the equivalent positions in real-space of wave functions at conduction band K/
Q, and valence band Γ should be quite different. Quantitatively, the equivalent positions of wave functions in

real-space, defined as r r r r= ( ) dz

+
2 , are rz=−0.5t (0.5t), −0.08t (0.08t) and 0 for spin-up (spin-down)

wavefunctions at conduction band K, conduction band Q, and valence band Γ, respectively. Here, r( ) 2

denotes the probability density of wavefunction r( ) at real-space position r, and t = 0.615 nm represents the
interlayer distance [39]. The origin point is set at the midpoint of the constituent two layers. Consequently,
both the two possible momentum-indirect transitions are real-space indirect and possess nonvanishing out-
of-plane static electric dipole moments: µ e r r e t e(K- ) = [ ( ) (K)] = ±0.5 = ±0.308 nmz z z for K-Γ

excitons and µ e r r e t e(Q- ) = [ ( ) (Q)] = ±0.08 = ±0.049 nmz z z for Q-Γ excitons, as shown in Figure
3E. On applying an external electric field Fz, the exciton energies would vary linearly due to the quantum-
confined Stark effect:

E E µ F= , (1)z z0

where E0 is the exciton energy at zero electric field. Importantly, the experiment results of RMX1-3 (hollows in
Figure 3F) can be described perfectly by Eq. (1) using the out-of-plane static electric dipole moment of K-Γ
transition (i.e., μz(K-Γ) = 0.308e·nm), as shown by solid lines in Figure 3F (please refer to Section VI in SI for
more information). This clearly manifests that the constituent electrons/holes of real- and momentum-
indirect RMX1-3 originate from K/Γ valley in the BZ, solving the longstanding debate on momentum origin. It
is noteworthy that the energy difference between RMX1 and RMX2 (RMX3) is ~22 meV (~46 meV), which
coincides with the energy of phonon mode TA(K) or ZA(K) [2TA(K) or 2ZA(K)] [40]. Thus, the RMX1

transition is probably a kind of zero-phonon line which may be activated by defect [25], and RMX2 and
RMX3 should correspond to the one-phonon and two-phonon replicas of RMX1, respectively. Note that two-
phonon replica RMX3 is too weak to be distinguished at zero electric field, but exhibits an intensity com-
parable to or even stronger than that of RMX1 at high electric fields (Figures 2C and 2D). This may indicate a
largely enhanced electron-phonon coupling by electric fields and deserves further studies.
Finally, we study the doping-density dependent responses of real- and momentum-indirect excitons in

bilayer MoS2. Figures 4A and 4B respectively depict the contour plot and line-cuts of PL spectra as a function
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of doping density. Here the out-of-plane electric field Fz is fixed at zero. Remarkably, when bilayer MoS2 is
doped with electrons, new sets of PL peaks emerge below the energy of the neutral real- and momentum-
indirect RMX1 and RMX2, which can be fitted to two new peaks with Lorentzian function (Figure 4B) and
correspond to real- and momentum-indirect trions (labeled as RMT1 and RMT2, respectively). This is in close
resemblance to the well-studied real- and momentum-direct exciton XA, which is tuned into charged exciton
(XA

-) upon electrostatic doping [41]. Note that at Fz=0, only RMX1 and RMX2 can be probed (Figures 2C and
2D). Figure 4C plots the energies of RMT1/RMT2 and RMX1/RMX2 , as well as XA/XA

-, as a function of
doping density. Notably, the binding energy of real- and momentum-indirect RMT1 (RMT2), i.e., the energy
difference between RMX1 (RMX2) and RMT1 (RMT2), can reach up to ~59 meV (~57 meV), which is more
than twice that of real- and momentum-direct XA

- (~24 meV) in bilayer MoS2 and also larger than the state-
of-the-art results of previously reported trion in 2D semiconductors [42–45].

CONCLUSION

In short, we demonstrate the real- and momentum-indirect neutral/charged excitons (including their phonon
replicas) in a multi-valley semiconductor of bilayer MoS2 by the combination of electric-field/doping-density
tunable PL measurements and first-principles calculations. Because of the sizable in-built electric dipoles,
real- and momentum-indirect excitons present quantum-confined Stark effect and are widely tunable in

Figure 3 (A) Orbital-resolved projected band structure of bilayer MoS2 considering the spin-orbit coupling. (B), (C), (D) Distribution of
real-part of spin-up wavefunctions in real-space at valence band Γ, conduction band K, and conduction band Q, respectively. (E) Possible
transition configuration for K-Γ (purple wave) and Q-Γ (cyan wave). The red (blue) curve denotes conduction band K (Q). The grey curve
denotes valence band Γ. The electric dipole moment of each transition is labelled. rz represents the equivalent position of the wavefunction at
each valley as discussed in the main text. (F) Experimental results of the photon energy of RMX1 (blue hollows), RMX2 (green hollows) and
RMX3 (red hollows) in device D1 as a function of Fz extracted from Figure 2C. Orange, purple, black solid lines and corresponding shadow
regions denote the linear-fit of RMX1/2/3 with a fixed slope μz(K-Γ) obtained from DFT calculations. The energy difference between RMX1 and
RMX2 (RMX3) is ~22 meV (46 meV).
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applied electric fields. Moreover, the Coulomb interaction between real- and momentum-indirect excitons
and free carriers is astonishingly strong in bilayer MoS2, endowing the giant binding energy of real- and
momentum-indirect trion of ~59 meV, more than twice that of real- and momentum-direct trion (i.e., ~24
meV). Our work not only fulfills the knowledge on real- and momentum-indirect neutral and charged
excitons, but also sheds light on the understanding and engineering of many-body physics and optoelec-
tronics based on multi-valley semiconductors.

Data availability
All data needed to evaluate the conclusions are presented in the paper and/or the Supplementary Information. Additional data
related to this paper may be requested from the authors.
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Figure 4 (A) Contour plot of the PL spectra of device D1 as a function of photon energy (bottom axis) and n0 (left axis). The out-of-plane
electric field Fz is fixed at zero. (B) PL spectra at diverse n0. Cyan and green peaks represent Lorentz-fit peaks for RMX1&2 and RMT1&2,
respectively. Note that the range of 1.45–1.60 eV in both (A) and (B) are magnified by 10 times for clarity. Offset is set in (B) for better
resolution. (C) Lorentz-fitted results extracted from (B) of XA (red hollows), XA

- (carmine hollows), RMX1 (green triangles), RMX2 (blue
cubes), RMT1 (light green triangles) and RMT2 (light blue cubes). The binding energy of XA

-, RMT1 and RMT2 is approximately 24, 59 and
57 meV, respectively.
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